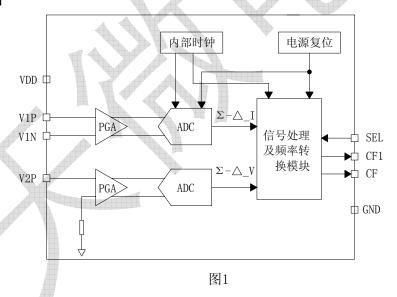


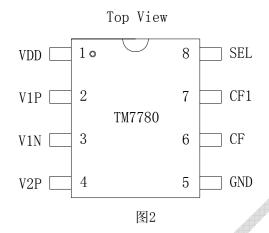
特性描述

TM7780是单相多功能计量芯片,其提供高频脉冲CF用于电能计量和高频CF1用于指示电流有效值或电压有效值。TM7780使用新型的防潜动算法,只要输入信号的功率值大于内部的噪声值,计量模块则开始正确计量。本产品性能优良,质量可靠。


功能特点

- ▶ 5V单电源供电,工作电流小于3mA
- ▶ 内置电源检测电路, 当电源电压低于4V时, 芯片进入复位状态
- ▶ 内置振荡器频率约为3.579MHz, 电源电压抑制比<0.01/V
- ▶ 高频脉冲CF, 指示有功功率, 满足50/60Hz IEC 687/1036标准的准确度要求, 在1000:1范围内 达到±0.2%的精度
- ▶ 高频脉冲CF1,可配置成为输出电流有效值或电压有效值,在500:1的范围内达到±0.5%的精度
- ▶ 封装形式: SOP8

应用领域


单相多功能电能表、智能插座、充电桩、数显表、路灯、小家电等需要测量电压、电流、功率的场合。

内部结构框图

©Titan Micro Electronics www.titanmec.com

管脚排列

管脚功能

引脚名称	引脚序号	1/0	功能说明	
VDD	1		电源正极	
V1P	2	I	电流差分信号输入端,最大差分输入信号(Vpeak)±43.75mV	
V1N	3	I	电流差分信号输入端,最大差分输入信号(Vpeak) ± 43.75mV	
V2P	4	I	电压信号正输入端,最大输入信号(Vpeak)±700mV	
GND	5		电源负极	
CF	6	0	输出有功高频脉冲,占空比50%	
CF1	7	0	SEL=0,输出电流有效值,占空比50% SEL=1,输出电压有效值,占空比50%	
SEL	8	I	配置有效值输出引脚,带下拉	

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

工作条件

1、极限工作条件

在25℃下测试,VDD=5V,如无特殊说明 TM7780				
参数名称	参数符号	极限值	单位	
逻辑电源电压	Vdd	$-0.3 \sim +6.0$	V	
模拟输入电压	$ m V_{INA}$	$-0.3 \sim Vdd + 0.3$	V	
数字输入电压	V_{IND}	$-0.3 \sim Vdd + 0.3$	V	
V1P, V1N, V2P		$-2 \sim +2$	V	
数字输出电压	$V_{ ext{outd}}$	$-0.3 \sim Vdd + 0.3$	V	
工作温度	TA	$-40 \sim +85$	$^{\circ}\mathbb{C}$	

©Titan Micro Electronics www.titanmec.com

单相计量 IC

TM7780

储存温度 Tstg −65~ +150 ℃

(1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。

(2) 所有电压值均相对于系统地测试。

2、推荐工作条件

在-40℃~+85℃下测试,VDD=5V, 如无特殊说明			TM7780			单位
参数名称	参数符号	参数符号 测试条件		典型值	最大值	中位
逻辑电源电压	Vdd		4.5	5. 0	5. 5	V
工作温度	TA		-40		85	$^{\circ}\mathbb{C}$

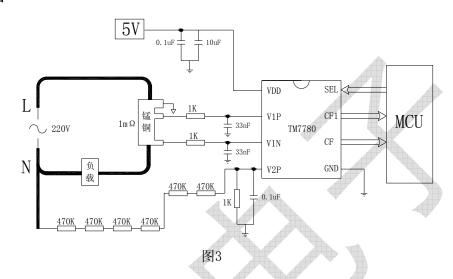
芯片参数

1、模拟电气特性

在-40℃~+85℃下测试,VDD=4.5V~5.5V,GND=0,如无 特殊说明						单位
参数名称	参数符号	测试条件	最小值	典型值	最大值	
有功功率 全增益范围 输入范围0.1%~100%	$P_{\mathtt{Active}}$			±0.2	4_	%
电流有效值 全增益范围 输入范围0.1%~100%	$I_{ ext{RMS}}$		-	±0.5	_	%
电压有效值 全增益范围 输入范围0.1%~100%	V_{RMS}			±0.5	_	%
共模信号		-	-1	_	+1	V
满量程时对电压通道串扰 (50,60Hz)	4.4	-	-	-100	_	dB
输入电容	IC	7	-	6. 4	_	pF
等效输入阻抗 电流通道	EII		ı	500	_	KΩ
等效输入阻抗 电压通道	EII		_	6	_	MΩ
等效输入噪声 电流通道	NI		-	_	2	μ Vrms
等效输入噪声 电压通道	$N_{\rm I}$	1-	_	_	20	μ Vrms
电流消耗	IA+ID		_	2.5	_	mA
功耗(VDD=5V)	PC		_	12.5	_	mW
掉电检测低压阈值	PMLO		_	4.0	_	V
掉电检测高压阈值	PMHI		_	4.3	_	V
基准电压	VREF		2. 3	2. 43	2.55	V
温漂	TC_{VREF}		_	25	_	ppm/℃

2、数字电气特性

在-40℃~+85℃下测试,	тм7780			单位		
参数名称	参数符号	测试条件	最小值	典型值	最大值	
主时钟频率	MCLK		3.04	3. 579	4. 12	MHz
主时钟占空比	ı		30	50	70	%
输入采样速率	DCLK		ı	MCLK/4	_	Hz
数字滤波器输出码率	OWR		ı	MCLK/128	_	Hz
高通滤波器转折(-3dB) 频率	-		-	0. 543	_	Hz
高电平输入电压(VDD=5V)	VIH		0.8VDD	_	-	V
低电平输入电压(VDD=5V)	VIL			_	0.8	V
高电平输出电压	VOH	Iout=5mA	VDD-0.5	_	_	V



单相计量 IC TM7780

低电平输出电压	VOL	Iout=-5mA	-	_	0. 5	V
输入漏电流	Iin		_	±10	-	μА
数字输出引脚电容	C_{out}		_	5	-	рF

应用信息

1、典型应用电路

如图3所示,在TM7780的电源端,应并联两个小电容,以滤除来自电网高频及低频噪声。电流信号通过锰铜电阻采样后接入TM7780,电压信号则通过电阻网络后输入到TM7780。CF、CF1、SEL直接接入到CPU的输入端,通过计算CF、CF1的脉冲周期来计算功率值、电流有效值、电压有效值的大小。

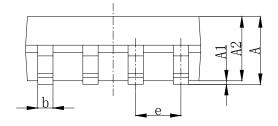
2、CF、CF1频率

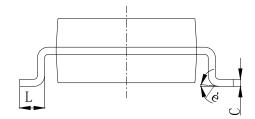
TM7780的内部DSP具有一定的增益,经过频率转换模块后,有功功率、电流有效值和电压有效值的输出频率可由一下公式计算:

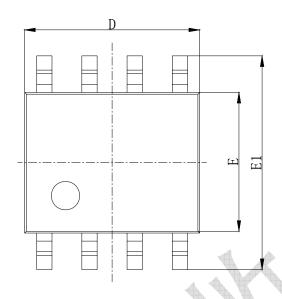
- (1) 电压有效值计算公式: $F_{CFU} = \frac{V2 \times 2}{V_{REF}} \times \frac{f_{osc}}{512}$
- (2) 电流有效值计算公式: $F_{CFI} = \frac{V1 \times 24}{V_{REF}} \times \frac{f_{osc}}{512}$
- (3) 有功功率计算公式: $F_{CF} = \frac{V1 \times V2 \times 48}{V_{REF}^2} \times \frac{f_{osc}}{128}$

V1: 电流通道引脚上对应的有效电压信号

V2: 电压通道引脚上对应的有效电压信号


fosc: 内置振荡器,典型值频率约为3.579MHz


VREF: 内置基准源,典型电压为2.43V


©Titan Micro Electronics www.titanmec.com

封装示意图: SOP8

Cyrmb o 1	Dimensions In Millimeters		Dimensions In	Inches
Symbol	Min	Max	Min	Max
A	1. 350	1. 750	0.053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0.013	0.020
c	0.170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0.200
Е	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BS	SC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)